
Science of the Total Environment xxx (xxxx) xxx
Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier .com/locate /sc i totenv
Accounting for two-billion tons of stabilized soil carbon
https://doi.org/10.1016/j.scitotenv.2019.134615
0048-9697/� 2019 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Department of Plant and Environmental Sciences, New Mexico State University, P.O. Box 30003, Las Cruces, NM 88003-8003, USA.
E-mail address: cwross@nmsu.edu (C.W. Ross).

Please cite this article as: C. W. Ross, S. Grunwald, J. G. Vogel et al., Accounting for two-billion tons of stabilized soil carbon, Science of the Total E
ment, https://doi.org/10.1016/j.scitotenv.2019.134615
C. Wade Ross a,b,⇑, Sabine Grunwald a, Jason G. Vogel c, Daniel Markewitz d, Eric J. Jokela c,
Timothy A. Martin c, Rosvel Bracho c, Allan R. Bacon a, Colby W. Brungard b, Xiong Xiong a

aUniversity of Florida, Soil and Water Sciences Department, 2181 McCarty Hall A, PO Box 110290, Gainesville, FL 32611, USA
bNew Mexico State University, Department of Plant and Environmental Sciences, MSC 3Q, PO Box 30003, Las Cruces, NM 88003, USA
cUniversity of Florida, School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Gainesville, FL 32611, USA
dWarnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
h i g h l i g h t s

� Environmental heterogeneity is a
large source of soil carbon variability.

� Strategic feature selection is used to
identify critical, regional-scale
relationships.

� Precipitation, nitrogen, and soil
moisture have the strongest
association with topsoil C.

� Parent material and elevation have
the strongest association with subsoil
C.

� Approximately 2.6 Pg C are stored in
the upper 1 m of production
forestland soil.
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The pedosphere is the largest terrestrial reservoir of organic carbon, yet soil-carbon variability and its
representation in Earth system models is a large source of uncertainty for carbon-cycle science and cli-
mate projections. Much of this uncertainty is attributed to local and regional-scale variability, and pre-
dicting this variation can be challenging if variable selection is based solely on a priori assumptions
due to the scale-dependent nature of environmental determinants. Data mining can optimize predictive
modeling by allowing machine-learning algorithms to learn from and discover complex patterns in large
datasets that may have otherwise gone unnoticed, thus increasing the potential for knowledge discovery.
In this analysis, we identify important, regional-scale determinants for top- and subsoil-carbon stabiliza-
tion in production forestland across the southeastern US. Specifically, we apply recursive feature elimi-
nation to a large suite of socio-environmental data to strategically select a parsimonious, yet highly
predictive covariate set. This is achieved by recursively considering smaller and smaller covariate
sets—or features—by first training the estimator on the full set to obtain feature importance. The least
important features are pruned, and the procedure is recursively repeated until a desired number of
covariates is identified. We show that although carbon ranges from 0.3 to 8.2 kg m�2 in the topsoil (0
to 20 cm), and from 0.4 to 17.6 kg m�2 in the subsoil (20 to 100 cm), this variability is predictably dis-
tributed with precipitation, soil moisture, nitrogen and sand content, gamma ray emissions, mean annual
minimum temperature, and elevation. From our spatial predictions, we estimate that 2.6 Pg of soil carbon
is currently stabilized in the upper 100 cm of production forestland, which covers 34.7 million ha in the
southeastern US.
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1. Introduction

Soil is a critical component of the global climate system, serving
as both a sink and a source of CO2 by actively exchanging carbon
with the atmosphere (Davidson, 2016; Luo et al., 2015). Resource
management, carbon cycle projections, and policy all rely on accu-
rate representations of soil carbon, yet global estimates remain
highly uncertain despite comprehensive efforts to quantify this
large reservoir (Gianelle et al., 2010). Depending on the depth
modeled, published estimates range from 863 to over 3800 Pg C
(Batjes, 2014; Eglin et al., 2010; Sanderman et al., 2017; Watson
et al., 2000). Much of the uncertainty is attributed to the vertical
and horizontal variability of soil, the scale of analysis, and the sub-
sequent loss of information that occurs during spatial aggregation
(Jobbágy and Jackson, 2000; Ross et al., 2013; Xiong et al., 2015),
which is particularly problematic when aggregating non-linear
data over large areas (Easterling, 1997).

Because soil carbon stabilization is governed by a multitude of
non-linear relationships, the strength of relationships can vary
with the scale of analysis (Miller et al., 2015; Xiong et al., 2016).
Across larger spatial scales, for example, carbon sequestration var-
ies with plant productivity, which in turn is affected by atmo-
spheric CO2 (Roy et al., 2016), growing season length (Hilton
et al., 2017), and resource availability (Eskelinen and Harrison,
2015). However, soil carbon responds to socio-environmental con-
ditions that can vary dramatically at different temporal scales and
across regional and sub-regional scales. Factors affecting soil car-
bon persistence include temperature, precipitation, and acidity
(Chen et al., 2018; Schmidt et al., 2011), as well as management
(Noormets et al., 2015), and disturbance from land use change
(Ross et al., 2016; Xiong et al., 2014b), fire (Godwin et al., 2017),
and erosion (Pimentel, 2006). Characterizing these factors at regio-
nal scales may be required to upscale soil carbon to global esti-
mates and to refine our understanding of soil carbon stabilization
(Mulder et al., 2016).

A recent US Department of Agriculture funded Coordinated
Agricultural Project referred to as PINEMAP (Pine Integrated Net-
work: Education, Mitigation, and Adaptation Project) addressed
this issue by establishing a monitoring network across the south-
eastern US to refine our understanding of carbon storage and
dynamics in managed forests at the regional-scale (Will et al.,
2015). Forests cover 99 million hectares of land in the southeast
and account for almost one third of all forested lands in the conter-
minous US (Oswalt et al., 2014). Not only are these forests an
economically-important resource—providing approximately 60%
and 16% of the US and global industrial wood supply by volume
(Oswalt et al., 2014)—but are ecologically important as well, and
sequestered enough aboveground carbon (176 Tg C yr�1) to miti-
gate 42% of the regions CO2 emissions between 2000 and 2005
(Lu et al., 2015). About one third of the regions forests are pine-
lands, of which 19% are comprised of managed pine plantations
(Wear and Greis, 2013). The most dominant species—loblolly pine
(Pinus taeda L.)—accounts for more than two thirds of all planted
tree species in the region (Wear and Greis, 2013).

Intense silvicultural production cycles in this region are a large
source of land-cover change, which subsequently affects the
region’s carbon cycle. An accurate estimate of soil-carbon distribu-
tion in southeastern production forestland is therefore a critical
step towards further resolving carbon-cycle science in this region,
and to identify factors potentially affecting soil carbon at the global
scale. By identifying important regional-scale associations, we
hypothesize that our models will provide improved estimates of
soil carbon stock when compared with those derived from global
models. In this analysis, we develop a data-driven approach to
model topsoil (0 to 20 cm) and subsoil (20 to 100 cm) carbon,
Please cite this article as: C. W. Ross, S. Grunwald, J. G. Vogel et al., Accounting
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which is based on a regional compilation (N = 2,564) of soil sam-
ples collected from PINEMAP research sites. Variable selection is
performed by applying recursive feature elimination to a compre-
hensive set (N = 73) of environmental predictors to identify parsi-
monious covariate sets (N = 5) for each depth interval, which are
used with the random forest (RF) algorithm to produce soil carbon
prediction maps for top- and subsoil depth intervals.

2. Material and methods

2.1. Study area

Our random forest models were trained on data collected from
the PINEMAP Tier 2 network, which consisted of 106 research sites
with 2 to 3 replicates (on average) at each site, for a total of 322
plots (Fig. 1). Tier 2 research sites were chosen to capture the
region-wide variation in soil, landscape positions, and climate that
characterize the native geographic range of loblolly pine.

Climate of the study area is classified as a warm and humid
temperate region with hot summers (Kottek et al., 2006); however,
temperature, humidity, and precipitation vary considerably across
this region (Fig. 2). Mean annual precipitation ranges from
1100 mm yr�1 in the Northern Inner Piedmont of Virginia to
1590 mm yr�1 in the Southern Pine Plains and Hills of Louisiana
and mean annual temperature ranges from 13.5 �C in the Northern
Inner Piedmont of Virginia to 20.3 �C in the Eastern Florida Flat-
woods (Abatzoglou, 2013). While the soils of this region are very
diverse, research sites are primarily positioned on Ultisols (61%),
Alfisols (23%), Spodosols (12%), Entisols (2%), and Inceptisols (2%)
(Soil Survey Staff, 2013).

2.2. Soil sampling

Soil samples were collected between 2012 and 2015 at eight
random locations with four locations randomly assigned to one
of two composite samples for analysis. Four depth intervals were
sampled for each location from most of the 322 plots, resulting
in 2,564 soil samples. Sampled depth intervals at each plot were
0 to 10, 10 to 20, 20 to 50, and 50 to 100 cm and plot size averaged
0.2 ± 0.14 ha (mean ± one standard deviation). Each composite
sample was sieved (2 mm) to remove coarse fractions (roots and
stones); stone mass and total mass of the air-dried samples were
recorded. A subsample (approximately 20% of air-dried mass)
was weighed and then dried for 48 h at 65 �C before recording
the oven-dried weight and analyzing soil carbon concentration
via dry combustion. We assume that the reported soil carbon con-
centration is predominantly organic in nature, as pH in surface
soils averaged 4.8, exceeding 5.5 only 12 times. Soil bulk density
(g cm�3) was measured via Eq. (1), and soil carbon content (g
cm�2) was derived according to Eq. (2).

Db ¼ Ms

Vt
ð1Þ

where Db is the bulk density (g cm�3), Ms = dry soil weight (g), Vt is
the soil core volume (cm-3).

SC ¼ c � Db � DZ ð2Þ
where SC is soil carbon (kg m-2), c is carbon concentration (%), Db is
bulk density (g cm�3), and DZ is the depth interval (cm).

2.3. Environmental covariates

Environmental covariates were assimilated from 16 datasets
acquired from national and international agencies (Table 1). These
data were chosen to represent the environmental factors from the
for two-billion tons of stabilized soil carbon, Science of the Total Environ-
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Fig. 1. PINEMAP (Pine Integrated Network: Education, Mitigation, and Adaption Project) Tier 2 research sites and areas identified as production forestland by Marsik et al.
(2018) within the native range of loblolly pine (Pinus taeda L.).
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STEP-AWBH modeling framework (Grunwald et al., 2011; Xiong
et al., 2014a), and contained information relating to the litho-
sphere, atmosphere, anthroposphere, hydrosphere, and biosphere.
All data were projected to Albers Equal Area Conic projection at
250 m2 resolution. Bilinear interpolation was used to resample
continuous data, and nearest neighbor was used to resample cate-
gorical data. The grid cell attribute information from each covariate
was extracted at the point location for each research site and
merged into a single data frame that consisted of 106 study sites,
corresponding to 322 observations and 73 covariates.
2.4. Variable selection and predictive modeling

A fundamental goal of predictive modeling is to generalize
beyond the relationships learned during model training; however,
generalizing correctly becomes increasingly difficult as the number
of covariates increase—a phenomenon referred to as the ‘‘curse of
dimensionality” (Bellman, 1961; Domingos, 2012). Variable selec-
tion was therefore performed using recursive feature elimination
(Kuhn, 2008) to identify a parsimonious, yet highly predictive
covariate set for top- and subsoil models. This was achieved by first
identifying pairwise-correlations and removing the variable with
the largest mean absolute correlation. A random forest regressor
was then fit to the remaining covariates to obtain feature impor-
Please cite this article as: C. W. Ross, S. Grunwald, J. G. Vogel et al., Accounting
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tance for each covariate, and the least important feature was
pruned from the modeling matrix. This procedure was repeated
recursively until the most important covariates (N = 5) remained.

Predictive relationships were modeled with the randomForest
package (Breiman, 2001; Liaw and Wiener, 2002) available in R
3.4.4 (R Core Team, 2019). Top- and subsoil models were trained
on their respective parsimonious covariate sets. A full random for-
est (RF) model with 1,000 individual regression trees and one
covariate (mtry = 1) was used at each split as determined by the
tuneRF algorithm included in the randomForest package. Model
performance was evaluated with an independent validation set
by randomly selecting 30% of the observations, leaving 70% of
the observations for model training. The two sample
Kolmogorov-Smirnov test was conducted to verify that the distri-
bution of soil carbon was similar between training and validation
sets (Massey, 1951). Associations between explanatory and
response variables was evaluated with accumulated local effects
(ALE) plots from the iml package (Molnar et al., 2018).
2.5. Uncertainty assessment

Model predictions were evaluated with the coefficient of deter-
mination (R2, Eq. (3)), root mean squared error (RMSE, Eq. (4)), and
the ratio of performance to interquartile distance (RPIQ, Eq. (5)).
for two-billion tons of stabilized soil carbon, Science of the Total Environ-
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Fig. 2. Long-term mean annual climate (1979 – 2011). Adapted from Abatzoglou (2013).
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R2 ¼ 1�
Pn

i¼1 yi � ŷið Þ2Pn
i¼1 yi � �yð Þ2

ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ŷi � yið Þ2
vuut ð4Þ

RPIQ ¼ IQ
RMSE

ð5Þ

where, byi are the model predicted values, yi are the observed values,
y is the mean of observed values, n is the number of predicted or
observed values in the held-out dataset (testing) with i = 1, 2,. . .,
n, SD is the standard deviation of the testing set, RMSE is the root
mean square error, and IQ is the interquartile range. The coefficient
of determination (R2) is a unitless index that measures the size of
the model residuals to the mean of the observed values. As such,
R2 indicates how close model predictions are to observations. RMSE
is defined as the standard deviation of the model residuals, which
indicates the spread of residuals around the line of best fit. RPIQ
Please cite this article as: C. W. Ross, S. Grunwald, J. G. Vogel et al., Accounting
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considers both prediction error and the variation of observed val-
ues, and is defined as the range of observed values divided by RMSE.
Higher R2 and RPIQ values translate to better model performance,
while lower RMSE indicates better model performance.

3. Results

The concentration of soil carbon (%) generally declines with
depth, and soil bulk density increases with depth (Fig. 3). However,
the vertical and horizontal distribution of measured soil carbon is
highly variable, both within and between PINEMAP research sites.
A considerable amount of the observed variation is attributed to
extreme, but infrequent values (Table 2).

Carbon contents across USDA soil taxonomy at the suborder
level also exhibit a considerable amount of variability, with median
carbon stock (kg m�2) greatest in the topsoil of Humods, Udepts,
and Aquults, while subsoil carbon is greatest in Orthods, Aquods,
and Aquults (Fig. 4).

Precautionary steps taken to ensure that the distribution of car-
bon was similar between the RF model training and validation sets
for two-billion tons of stabilized soil carbon, Science of the Total Environ-
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Table 1
Covariates used for variable selection with recursive feature elimination.

Variablea Abbreviation Na Source/Dataseta Scale/Resolution (m) Date

Gamma ray emissions gammaAbsDose 1 USGS Gamma-ray 2000 1975 – 1980
Thorium-232 gammaThorium 1 USGS Gamma-ray 2000 1975 – 1980
Potassium-40 gammaPotassium 1 USGS Gamma-ray 2000 1975 – 1980
Uranium-238 gammaThorium 1 USGS Gamma-ray 2000 1975–1980
Parent material age UNIT_AGE 1 USGS NGM 1:100000 1998
Parent material ROCKTYPE1 1 USGS NGM 1:100001 1998
Parent material ROCKTYPE2 1 USGS NGM 1:100001 1998
Elevation srtmElevation 1 CGIAR SRTM 90 1999
Slope percent srtmSlopePct 1 CGIAR SRTM 90 1999
Aspect srtmAspect 1 CGIAR SRTM 90 1999
Curvature srtmCurv 1 CGIAR SRTM 90 1999
Flow direction srtmFlowDir 1 CGIAR SRTM 90 1999
Flow accumulation srtmFlowAcc 1 CGIAR SRTM 90 1999
TWI srtmTWI 1 CGIAR SRTM 90 1999
Clay content clay_0to100 2 100 2018
Potassium k_0to100 2 100 2018
Magnesium mg_0to100 2 100 2018
pH ph_0to100 2 100 2018
Sand content sand_0to100 2 100 2018
Precipitation Idaho_pr 2 METDATA 4000 1979 – 2010
Maximum RH Idaho_rmax 1 METDATA 4000 1979 – 2010
Minimum RH Idaho_rmin 1 METDATA 4000 1979 – 2010
Specific humidity Idaho_sph 1 METDATA 4000 1979 – 2010
Minimum temperature Idaho_tmmn 1 METDATA 4000 1979 – 2010
Maximum temperature Idaho_tmmx 1 METDATA 4000 1979 – 2010
Historical land use usgsLUhist 1 USGS LULC 30 1975 – 1980
Soil moisture SMOS 1 NASA SMOS 15,000 2010
Ecoregion US_L4NAME 4 Ecoregions 1:250000 2012
Biophysical setting us_110bps 1 LANDFIRE 30 2009
Forest canopy density us_110cbd 1 LANDFIRE 30 2009
Forest canopy height us_110cbh 1 LANDFIRE 30 2009
Canopy cover us_110cc 1 LANDFIRE 30 2009
Canopy height us_110ch 1 LANDFIRE 30 2009
Vegetation cover us_110evc 1 LANDFIRE 30 2009
Vegetation height us_110evh 1 LANDFIRE 30 2009
Vegetation type us_110evt 1 LANDFIRE 30 2009
Fire regime groups us_110frg 1 LANDFIRE 30 2009
Mean fire return interval us_110mfri 1 LANDFIRE 30 2009
Percent low severity us_110pls 1 LANDFIRE 30 2009
Percent mixed severity us_110pms 1 LANDFIRE 30 2009
Replacement severity us_110prs 1 LANDFIRE 30 2009
Succession class us_110sclass 1 LANDFIRE 30 2009
Disturbance us_dist[year] 1 LANDFIRE 30 2009
Fuel disturbance us_fdist[year] 1 LANDFIRE 30 2009
Vegetation disturbance us_vdist[year] 1 LANDFIRE 30 2009
Land cover nlcdLU[year] 1 NLCD 30 2001
EVI modEVI_Annual 1 MODIS4NACP 500 2005
FPAR modFPAR_Annual 1 MODIS4NACP 500 2005
GPP modGPP_Annual 1 MODIS4NACP 500 2005
Leaf area index modLAI_Annual 1 MODIS4NACP 500 2005
NDVI modNDVI_Annual 1 MODIS4NACP 500 2005
Hydrologic soil groups HSG 1 HYSOGs250m 250 2018

a Abbrevations: TWI, topographic wetness index; RH, mean annual maximum relative humidity; EVI, mean annual enhanced vegetation index; FPAR, mean annual fraction
of photosynthetically active radiation; GPP, mean annual gross primary production; NDVI, mean annual normalized difference vegetation index; USGS, United States
Geological Survey; United States Department of Agriculture; NGM, national geologic map; CGIAR, Consultative Group for International Agricultural Research; SRTM, shuttle
radar topography mission; METDATA, meteorological data; N, number of variables; LULC, land use land cover; NASA, National Aeronautics and Space Administration; SMOS,
mean annual soil moisture and oceanic salinity; MODIS, mean annual moderate resolution imaging spectroradiometer; HYSOGs, hydrologic soil groups.
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indicates that these subsets resemble the whole set (N = 322). The
Kolmogorov-Smirnov test confirms that topsoil (p = 0.66) and sub-
soil (p = 0.51) training sets share a common distribution with their
respective validation sets.

3.1. Feature selection and model evaluation

The distribution of top- and subsoil carbon are modeled with
parsimonious covariate sets, which were identified with recursive
feature elimination. Predictors include mean annual precipitation
and minimum temperature (Abatzoglou, 2013), soil moisture
(Kerr et al., 2001), soil nitrogen and sand content (Ramcharan
et al., 2018), gamma ray emissions of potassium (40K) and thorium
(232Th) (Duval et al., 2005), and elevation (Jarvis et al., 2008). Eval-
Please cite this article as: C. W. Ross, S. Grunwald, J. G. Vogel et al., Accounting
ment, https://doi.org/10.1016/j.scitotenv.2019.134615
uation of the ALE plots (Fig. 5) indicates that precipitation has the
largest effect for predicting topsoil carbon variability, followed by
soil nitrogen, gamma-ray emissions of 40K, mean annual soil mois-
ture, and sand content. Sand content had the largest effect on sub-
soil carbon predictions, followed by gamma-ray emissions of 232Th,
elevation, mean annual soil moisture, and mean annual minimum
temperature.

Model evaluation with the validation set indicates that random
forest was able to explain 69% and 67% of top- and subsoil carbon
variability, respectively (Table 3). This corresponds to a RMSE of
0.77 kg m�2 for topsoil carbon, and 1.3 kg m�2 for subsoil carbon.
Predicted topsoil carbon—which ranges from 1.7 to 9.8 kg m�2

with a mean value of 4.0 ± 0.8 kg m�2—compares well with mea-
sured soil carbon, which ranges from 1.1 to 12.6 kg m�2 with a
for two-billion tons of stabilized soil carbon, Science of the Total Environ-
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Fig. 4. a) Topsoil (0 – 20 cm) and b) subsoil (20 – 100 cm) carbon content by suborder as sampled from Tier 2 research sites (N = 322). Numbers in parenthesis denote the
number of observations for each suborder.

Fig. 3. Kernel density estimates of measured soil organic carbon concentration (left) and soil bulk density (right) for each depth interval.

Table 2
Descriptive statistics for topsoil (0 to 20 cm) and subsoil (20 to 100 cm) carbon.

Soil carbon (kg m�2)

Dataset Min Mean Med Max SD Kurtosis Variance Skewness

Whole Topsoil 1.1 3.7 3.5 12.6 1.5 5.6 2.2 1.7
Subsoil 1.3 4.3 3.6 22.0 2.5 9.2 6.1 2.4

Training Topsoil 1.1 3.6 3.4 12.6 1.4 6.6 2.1 1.7
Subsoil 1.4 4.3 3.6 22.0 2.4 12.7 5.8 2.7

Validation Topsoil 1.5 3.8 3.7 10.3 1.6 3.8 2.5 1.6
Subsoil 1.3 4.3 3.5 14.0 2.6 3.2 6.9 1.8

Min, minimum; Med, median; Max, Maximum; SD, standard deviation.
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mean of 3.7 ± 1.5 kg m�2 (Table 2). Likewise, predicted and mea-
sured subsoil carbon were comparable, which ranged from 2.5 to
9.6 kg m�2 with a mean value of 4.6 ± 1.0 kg m�2, and from 1.3 to
22.0 kg m�2 with a mean value of 4.3 ± 2.5 kg C m�2, respectively.
Please cite this article as: C. W. Ross, S. Grunwald, J. G. Vogel et al., Accounting
ment, https://doi.org/10.1016/j.scitotenv.2019.134615
3.2. Soil carbon stock

From our prediction maps (Fig. 6), we estimate that 2.6 ± 0.8 Pg
C of soil carbon is currently stabilized in the top 100 cm of soil in
production forestlands, which cover 34.7 million ha of land
(Marsik et al., 2018). Although the concentration of soil carbon
for two-billion tons of stabilized soil carbon, Science of the Total Environ-
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Table 3
Top- and subsoil model evaluation with training and validation sets for two soil depth
intervals (0–20 cm and 20–100 cm).

0 – 20 cm 20 – 100 cm

Training Validation Training Validation

R2 0.86 0.69 0.79 0.67
RMSE 0.63 0.77 1.28 1.29
RPIQ 2.64 2.10 1.50 1.96

R2, coefficient of determination; RMSE, Root mean square error; RIPQ, Ratio of
performance to inter-quartile distance. The training and validation set consisted of
225 and 97 observations, respectively.

Fig. 5. Accumulated local effects for a) topsoil (0 – 20 cm) and subsoil (20 – 100 cm) covariate sets, which are ranked from highest feature importance (top left) to lowest
feature importance (bottom) for each panel. The x-axis represents the units of the independent variables, and the y-axis represents the mean effect each independent variable
has on the prediction. Variables include mean annual precipitation (mm), soil nitrogen (mg/g), mean annual soil moisture (m3 m�3), sand content (%), and gamma ray
emissions of potassium (% K). Panel (b) shows the accumulated local effects for the subsoil model, which includes sand content (%), gamma ray emissions of thorium (ppm
eTh), elevation (m), soil moisture (m3 m�3), and mean annual minimum temperature (K).
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declines with depth, we show that subsoils account for ca. 54%
(1.4 ± 0.4 Pg) of the total carbon stock, and that this carbon is pre-
dictably distributed with a relatively small covariate set. These
results are in general agreement with other estimates, such that
previous assessments have reported that ca. half of Earth’s soil car-
bon is stabilized in the subsoil (Jobbágy and Jackson, 2000; Rumpel
and Kögel-Knabner, 2011).

Soil carbon generally increases with proximity to the coast,
although there is considerable spatial variability as evidenced in
Fig. 6. While our spatial patterns are in general agreement with
those produced by Hengl and colleagues (2017), further evaluation
indicated that the SoilGrids predictions tended to overestimate
carbon (0 to 100 cm) in this system. When tested against our val-
idation set, the SoilGrids predictions achieved an R2 of 0.31 and a
RMSE of 7.6 kg C m�2. Hengl and colleagues (2017) were able to
explain 63.5% of the variation in soil carbon globally; however,
our comparison reveals that SoilGrids was unable to explain the
regional-scale variability in our system of interest to any satisfying
degree. Integrating regional-scale soil carbon measurements with a
data-mining framework allowed us to optimize our models by
identifying the most important predictors for our system and scale
of analysis. This comparison not only underscores the need for
regional-scale models, but also supports the usefulness of strategic
Please cite this article as: C. W. Ross, S. Grunwald, J. G. Vogel et al., Accounting
ment, https://doi.org/10.1016/j.scitotenv.2019.134615
feature selection for model optimization in specific regions or
scales of analysis.
4. Discussion

This study integrates data mining with extensive field sampling
to express the region-wide variation of soil carbon in pine planta-
tions across the southeastern US. We identify a parsimonious, yet
highly predictive covariate set by utilizing strategic feature selec-
tion. For our topsoil model, precipitation, nitrogen, and 40K had
the largest effect for predicting carbon variability. Examination of
the ALE plots indicates that precipitation and 40K have non-linear
relationships with topsoil carbon across the region, while soil
moisture and nitrogen show a strong positive association (Fig. 5).
The positive effect of water availability, and more importantly,
nitrogen availability is well established for productivity and carbon
sequestration in southern pine forests (Bracho et al., 2018; Jokela
et al., 2004; Vogel et al., 2011). Fertilization increases both net pri-
mary productivity and biomass, and often the turnover of fine
roots, which can aid soil carbon sequestration (Haile et al., 2010)
by enhancing soil structure (Sarkhot et al., 2008) (e.g., increased
aggregation).

Soil moisture has a strong positive association with subsoil car-
bon as well; however, sand content, elevation, and 232Th have
slightly stronger effects according to the ALE plots (Fig. 5). The
gamma-ray data correspond primarily to the mineralogy and geo-
chemistry of the parent material in erosional landscapes—such as
the Piedmont region. In depositional landscapes like the Coastal
Plain, gamma ray emissions correspond primarily to the geochem-
istry and mineralogy of the parent material from which the sedi-
ments were derived (Wilford and Minty, 2006).

Indeed, the transition from crystalline-derived soils in the Pied-
mont to sedimentary-derived soils of the Coastal Plain was effec-
tively captured by the gamma ray data, as evidenced in Fig. 6.
Carbon stabilization in the Piedmont is heavily influenced by the
regions moderately deep and well-drained soils that formed in
for two-billion tons of stabilized soil carbon, Science of the Total Environ-
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material weathered from metamorphosed granite (i.e., granitic
gneiss). Soil texture in the Piedmont is generally silty clay loam
or clay loam, which effectively aids soil carbon stabilization via
adsorption of organic matter to the clay surface. Conversely, Upper
and Lower Coastal Plain soils formed primarily from parent mate-
rials of marine deposits, and therefore tend to be sandy and nutri-
ent poor. However, the density of soil carbon is generally greater in
the Lower Coastal Plain (Fig. 6), where carbon stabilization is aided
by low landscape positions (i.e., elevation), high mean-annual pre-
cipitation, and shallow water tables. These factors have a profound
effect on soil development, which is reflected by the extent of ‘wet
soils’ (e.g., Aqualfs, Aquults, and Aquods) and carbon-rich spodic
(Bh) horizons—a key diagnostic feature that is ubiquitous to soils
of the lower Coastal Plain (Gonzalez et al., 2018).

4.1. Implications

While the coordinated implementation of silvicultural treat-
ments has increased productivity and thus carbon sequestration
in southeastern US pine plantations, global warming and the asso-
ciated changes in climate may alter forest productivity, structure,
and species geographic range. Minimum temperature currently
constrains productivity at the northern extent of the region, lead-
ing to the assumption that an expanded growing season in
response to warmer temperatures could enhance primary produc-
tion (Nedlo et al., 2009). However, the response of soil carbon to
increased mean annual temperature is not yet fully resolved as
clearly demonstrated by the lack of temperature as a topsoil car-
bon predictor, as well as the non-linear response to temperature
in the subsoil (Fig. 5). This is an important consideration in the
context of forest management and carbon cycle science in the
southeastern US, as the region is expected to be warmer and poten-
tially drier in the coming decades (Ingram et al., 2013).

Although precipitation is expected to increase across the south-
eastern US in response to warmer temperatures, the region will
likely experience more intense, but less-frequent rainfall events
during the growing season (Li et al., 2010). As such, soil moisture
and water availability will likely decrease as drought conditions
increase in response to global warming, as well as increased runoff
during high-intensity rainfall events in areas that have
moderately-high and high-runoff potential (Ross et al., 2018).
Loblolly pine is a moderately drought tolerant species; however,
the strong positive association of soil moisture with top- and sub-
soil carbon suggests that these soils could function as a net source
of atmospheric CO2 in response to long-term drought conditions.

There is also concern that the negative effects of drought on net
primary productivity could be exacerbated due to increased leaf
area in response to nitrogen and phosphorus fertilization, thus
increasing evapotranspiration and water stress in these systems.
While the interactive effects of drought and fertilization have
rarely been investigated experimentally, Bracho and colleagues
(2018) recently reported that fertilization did not exacerbate the
effects of experimental drought conditions (30% throughfall reduc-
tion) in managed loblolly pine plantations at four locations across
the southeastern US. Total and heterotrophic soil respiration
reportedly decreased in response to fertilization treatments; how-
ever, it remains unclear if this suppression had any quantifiable
effect on soil carbon, and if soil carbon stock is stabilized against
future changes in temperature, precipitation, and management.
Results from our analysis indicate that nitrogen has a strong posi-
tive association with topsoil carbon (Fig. 5), suggesting that land
management (i.e., fertilization) has had a positive effect on soil car-
bon stabilization in production forestland across the region.

Identifying associations that are important for carbon stabiliza-
tion in specific regions and/or ecosystems is critical to further
resolving carbon dynamics in response to global change. While
Please cite this article as: C. W. Ross, S. Grunwald, J. G. Vogel et al., Accounting
ment, https://doi.org/10.1016/j.scitotenv.2019.134615
feature selection was able to reduce model uncertainty by identify-
ing important predictors for our system and scale and of analysis,
further research is required to fully resolve soil-carbon dynamics
in response to global change. For example, is soil carbon in the
Lower Coastal Plain stabilized against potentially lower water
tables due to population growth and increased demand for food
and water? Or will warmer and drier conditions increase carbon
mineralization and atmospheric CO2? How will the interactive
effects of increased nitrogen deposition (or fertilization) and
drought conditions affect soil carbon in production forestlands?

5. Conclusions

We demonstrate the application of strategic feature selection to
identify covariates that are important for soil-carbon stabilization
across a large and highly-variable region. We opted for a parsimo-
nious covariate-set (N = 5) to increase model interpretation while
avoiding the ‘‘curse of dimensionality”. Mean annual precipitation
and gamma-ray emissions of 40K have non-linear associations with
topsoil carbon, while sand content, nitrogen, and soil moisture
show strong, positive associations. Although temperature is often
used to explain soil-carbon variation, our results indicate that
other covariates were more important for explaining topsoil-
carbon stabilization. In the subsoil, topo-edaphic conditions and
soil moisture were more important for explaining carbon stabiliza-
tion, which was primarily attributed to landscape position and
water-table depth. From our spatial predictions, we estimated that
2.6 ± 0.8 Pg of soil carbon is currently stabilized in production
forestlands, which corresponds to 34.7 million ha. The data-
mining strategy presented here has significance for other modeling
applications, as it is often not known which predictors will achieve
the best data-model fit in a given region due to scale-dependent
relationships.
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